Skip to main content

Raised ICP,the hyperosmolar therapy..Part1..Pathophysiology


Raised intracranial pressure (ICP) appears to be quite lethal: in traumatic brain injury patients, those with ICP > 40 mm Hg had a mortality of 56%, compared to 18% for those with ICP < 20 mm Hg. Most traumatic brain injuries causing long-term disability also initially presented with raised intracranial pressure.
As volume increases inside the skull, intracranial pressure exponentially rises after it passes an inflection point of ~20-25 mm Hg. As ICP passes 50-60 mm Hg and approaches arterial pressure, global brain ischemia and eventual brain death result. The brain is 80% water, so using hyperosmolar agents to create an osmolar gradient between the inside of the brain and the systemic circulation has strong theoretical appeal. Hypertonic saline and mannitol are effective because they do not cross the blood-brain barrier (much), and thereby draw cerebrospinal fluid out of the cranium and fluid out of the injured brain, reducing pressure and further injury.
In brain injuries that include disruption of the blood-brain barrier, hyperosmolar therapy may be less effective.
There is no definitive evidence from prospective randomized trials that reducing intracranial pressure with hyperosmolar therapy saves lives or prevents disability. The theoretical evidence for its benefit is so persuasive, though, that placebo-controlled trials will not be performed.Post hoc analyses of randomized trials of brain injured patients, along with observational trials, suggest that reducing intracranial pressure does improve outcome.

Comments

Popular posts from this blog

The pressure volume loop...

In the pressure-volume loop below, cardiac work is best represented by:   the area of the curve  the slope of the line from points C to D  the distance of the line from points C to D  the slope of a line from points A to D .. .. ... .... ... .... .... .... In the pressure-volume loop below, cardiac work is best represented by:  the area of the curve Cardiac work is the product of pressure and volume and is linearly related to myocardial oxygen consumption. Cardiac work is best represented by the area of the curve of a pressure-volume loop.

Driving Pressure in ARDS: A new concept!

Driving Pressure and Survival in the Acute Respiratory Distress Syndrome Marcelo B.P. Amato, M.D., Maureen O. Meade, M.D., Arthur S. Slutsky, M.D., Laurent Brochard, M.D., Eduardo L.V. Costa, M.D., David A. Schoenfeld, Ph.D., Thomas E. Stewart, M.D., Matthias Briel, M.D., Daniel Talmor, M.D., M.P.H., Alain Mercat, M.D., Jean-Christophe M. Richard, M.D., Carlos R.R. Carvalho, M.D., and Roy G. Brower, M.D. N Engl J Med 2015; 372:747-755 February 19, 2015 DOI: 10.1056/NEJMsa1410639 BACKGROUND Mechanical-ventilation strategies that use lower end-inspiratory (plateau) airway pressures, lower tidal volumes (V T ), and higher positive end-expiratory pressures (PEEPs) can improve survival in patients with the acute respiratory distress syndrome (ARDS), but the relative importance of each of these components is uncertain. Because respiratory-system compliance (C RS ) is strongly related to the volume of aerated remaining functional lung during disease (termed functional lung size)...

Anaphylaxis updates part 2- Empty Ventricle Syndrome

Patients with anaphylaxis should not suddenly sit, stand, or be placed in the upright position. Instead, they should be placed on the back with their lower extremities elevated or, if they are experiencing respiratory distress or vomiting, they should be placed in a position of comfort with their lower extremities elevated. This accomplishes 2 therapeutic goals: 1) preservation of fluid in the circulation (the central vascular compartment), an important step in managing distributive shock; and 2) prevention of the empty vena cava/empty ventricle syndrome, which can occur within seconds when patients with anaphylaxis suddenly assume or are placed in an upright position. Patients with this syndrome are at high risk for sudden death. They are unlikely to respond to epinephrine regardless of route of administration, because it does not reach the heart and therefore cannot be circulated throughout the body