Skip to main content

Refractory Hypotension...Vasoplegic syndrome...part1



Unexpected refractory hypotension under general anesthesia is an increasingly recognized perioperative issue.

 One cause for this type of hypotension is vasoplegic syndrome (VS). It is most commonly seen during cardiac surgery, but can occur during any anesthetic. 
It is characterized by severe hypotension refractory to catecholamine therapy in the absence of other identifiable causes for hypotension.

While there is no standardized definition for VS, some researchers have defined it as a mean arterial pressure <50mmHg with a cardiac index >2.5 L/min x m2 and a low systemic vascular resistance despite adrenergic vasopressor administration.

The incidence of VS in cardiac surgical patients is 8% to 10 %, but may increase to upwards of 50% of patients taking renin angiotensin system (RAS) antagonists.2
 In cardiac surgical patients with persistent hypotension into the postoperative period, the associated mortality approaches 25%.3


While RAS antagonists and their causal association with VS will be the focus of this review, many other risk factors exist. They include, beta-blockers, calcium channel blockers, protamine use, myocardial dysfunction, diabetes mellitus, heart transplant,presence of pre-cardiopulmonary bypass (CPB) hemodynamic instability, valvular and heart failure surgery, increased duration of CPB, or ventricular assist device insertion.


1. Shanmugam G. Vasoplegic syndrome—the role of methylene blue.
European J of Cardio-thoracic Surgery 2005; 28:705-710.
2. Mekontso-Dessap A, Houel R, Soustelle C, Kirsch M, Thebert D, Loisance DY. Risk factors for post-cardiopulmonary bypass vasoplegia in patients with preserved left ventricular function.
 Ann Thorac Surg 2001;71:1428-1432.
3. Gomes WJ, Carvalho AC, Palma JH, Teles CA, Branco JN, Silas MG, Buffolo E. Vasoplegic syndrome after open heart surgery. J Cardiovasc Surg 1998;39:619-623.


Comments

Popular posts from this blog

Driving Pressure in ARDS: A new concept!

Driving Pressure and Survival in the Acute Respiratory Distress Syndrome Marcelo B.P. Amato, M.D., Maureen O. Meade, M.D., Arthur S. Slutsky, M.D., Laurent Brochard, M.D., Eduardo L.V. Costa, M.D., David A. Schoenfeld, Ph.D., Thomas E. Stewart, M.D., Matthias Briel, M.D., Daniel Talmor, M.D., M.P.H., Alain Mercat, M.D., Jean-Christophe M. Richard, M.D., Carlos R.R. Carvalho, M.D., and Roy G. Brower, M.D. N Engl J Med 2015; 372:747-755 February 19, 2015 DOI: 10.1056/NEJMsa1410639 BACKGROUND Mechanical-ventilation strategies that use lower end-inspiratory (plateau) airway pressures, lower tidal volumes (V T ), and higher positive end-expiratory pressures (PEEPs) can improve survival in patients with the acute respiratory distress syndrome (ARDS), but the relative importance of each of these components is uncertain. Because respiratory-system compliance (C RS ) is strongly related to the volume of aerated remaining functional lung during disease (termed functional lung size)...

Anaphylaxis updates part 2- Empty Ventricle Syndrome

Patients with anaphylaxis should not suddenly sit, stand, or be placed in the upright position. Instead, they should be placed on the back with their lower extremities elevated or, if they are experiencing respiratory distress or vomiting, they should be placed in a position of comfort with their lower extremities elevated. This accomplishes 2 therapeutic goals: 1) preservation of fluid in the circulation (the central vascular compartment), an important step in managing distributive shock; and 2) prevention of the empty vena cava/empty ventricle syndrome, which can occur within seconds when patients with anaphylaxis suddenly assume or are placed in an upright position. Patients with this syndrome are at high risk for sudden death. They are unlikely to respond to epinephrine regardless of route of administration, because it does not reach the heart and therefore cannot be circulated throughout the body

Epidural catheter tests...not only the test dose

Siphon test The catheter is held upright and a fluid level sought. If the catheter is then elevated, the fluid level should fall (see inset) as the fluid siphons in to the epidural space, which is usually under negative pressure compared with atmospheric. If the fluid column continues to rise, this may suggest subarachnoid placement. The siphon test can be reassuring, but is not mandatory. Aspiration  This should be considered mandatory. The Luer connector is attached to the catheter and a syringe is used to apply negative pressure. Free and continued aspiration of clear fluid can indicate subarachnoid placement of the catheter. However, if saline has been used for loss of resistance, it is not unusual for a small amount of this to be aspirated. If there is doubt, the aspirated fluid can be tested for glucose (cerebrospinal fluid will generally test positive) or mixed with thiopentone (cerebrospinal fluid forms a precipitate). If blood is freely and continuously aspirated, this sug...