Skip to main content

Oxygen Injection...Will we forget anoxia?

Dr. Kheir was involved in an incident with a critically ill 9 month old patient who sustained brain injury after prolonged hypoxemia. She was put on bypass, but it was too late to save her brain. After that, Kheir started dreaming of a syringe with intravenous oxygen they could’ve given her. And went to work on it.


hey now seem to have a working prototype of a lipid emulsion that contains oxygen and can be injected into the blood stream, release the oxygen and thereby reoxygenate the blood. Their findings are published in Science Translational Medicine. Actually we have only the Abstract to this article..



Intravenous Oxygen
Intravenous administration of oxygen was tried in the early 1900s, but these attempts failed to oxygenate the blood and often caused dangerous gas embolisms as free oxygen oxygen in blood spontaneously formed larger gas bubbles.
Dr Kheir and his Harvard Team has engineered around this problem by packaging the gas into small, deformable lipid particles. They also increase the surface area for gas exchange and are able to squeeze through capillaries where free gas bubbles would get stuck.
Mixing the solution with human blood in a lab glass immediately turned the dark blood bright red, and measurements showed the oxygen was available for gas exchange. They have also injected the solution into hypoxemic rabbits. Arterial saturation was near normal after a few seconds. And fell again when they stopped the infusion.
Current Limitations and Obstacles
There still seems to be a few problems. The solution carrying the oxygen isn’t too healthy for you in large quanteties. They have managed to concentrate a lot of oxygen into a small amount of liquid, but apparently you can only infuse this agent for 15-30 mins before you start to reach maximum safe levels.
And it might not be working as well as one would hope, just yet. Reading the abstract, the outcome of the next experiment was a little more worrying:
“The particles were also infused into rabbits undergoing 15 min of complete tracheal occlusion. The oxygen microparticles significantly decreased the degree of hypoxemia in these rabbits, and the incidence of cardiac arrest and organ injury was reduced compared to controls.”
Hypoxemia was significantly decreased? The incidence of cardiac arrrest was reduced? The incidence of cardiac arrest should be gone, if this really worked. So this doesn’t sound like the pocketable pre-drawn i.v. oxygen syringe I was hoping for. In any case, this is an exciting sic-fi innovation.
In a later iteration, it could save difficult intubation scenarios, can’t intubate can’t ventilate, or other forms of acute and critical airways, lung injuries or other events leading to severe hypoxemia. It would buy us time to intervene to establish an airway, or put the patient on ECMO.
                                                 Click here for Abstract

Comments

  1. Well, this is my first visit to your blog! But I admire the precious time and effort you put into it, especially into interesting articles you share here!
    anaesthesia Machine

    ReplyDelete

Post a Comment

Popular posts from this blog

power injectable peripherally inserted central catheters

Clinical experience with power injectable peripherally inserted central catheters in intensive care patients     Introduction In intensive care units (ICU), peripherally inserted central catheters (PICC) may be an alternative option to standard central venous catheters, particularly in patients with coagulation disorders or at high risk for infection. Some limits of PICCs (such as low flow rates) may be overcome by the use of power-injectable catheters . Method We have retrospectively reviewed all the power injectable PICCs inserted in adult and pediatric patients in the ICU during a 12-month period, focusing on the rate of complications at insertion and during maintenance. Results We have collected 89 power injectable PICCs (in adults and in children), both multiple and single lumen. All insertions were successful. There were no major complications at insertion and no episodes of catheter-related blood stream infection. Non-infective complications ...

The pressure volume loop...

In the pressure-volume loop below, cardiac work is best represented by:   the area of the curve  the slope of the line from points C to D  the distance of the line from points C to D  the slope of a line from points A to D .. .. ... .... ... .... .... .... In the pressure-volume loop below, cardiac work is best represented by:  the area of the curve Cardiac work is the product of pressure and volume and is linearly related to myocardial oxygen consumption. Cardiac work is best represented by the area of the curve of a pressure-volume loop.

Steroids In Perioperative period...The Multi-purpose Drugs

1-Steroids are not Bronchodilator ,but have well established usefulness in hyper-reactive airway. They are also said to have a permissive role for bronchodilator medication. They can be administered orally, parenterally or in aerosol form 2- Steroids have been commonly used in chemotherapy for prevention of nausea along with other anti-emetic agents . Dexamethasone was found to be highly effective when given immediately before induction rather than at the end of anesthesia . 3- Steroids do exert analgesic effects. Various routes of administration of steroids include parentral, local infiltration at operated site , as an adjuvant in nerve blocks and central-neuraxial blockade. 4 - Steroids cannot be the mainstay of therapy in anaphylaxis because of the delayed onset of action, so they are used as adjunct after initial treatment with epinephrine. 5- Steroids (Dexamethsone) are of value in reduction or prevention of cerebral edema associated with parasitic infections and neopla...