Skip to main content

TRANSCATHETER AORTIC VALVE IMPLANTATION ..What is good and what is bad



An estimated 2% to 9% of the elderly have aortic stenosis.

 Aortic valve replacement reduces mortality rates and improves function in all age groups, including octogenarians. 

Those with asymptomatic aortic stenosis tend to decline very quickly once they develop heart failure, syncope, or angina. Aortic valve replacement has been shown to put people back on the course they were on before they became symptomatic.

Transcatheter self-expanding transaortic valve implantation was approved by the FDA in November 2011. The procedure does not require open surgery and involves angioplasty of the old valve, with the new valve being passed into place through a catheter and expanded. Access is either transfemoral or transapical.
Transaortic valve implantation has been rapidly adopted in Europe since 2002 without any randomized control trials. 

The Placement of Aortic Transcatheter Valves (PARTNER) trialin 2011 was the first randomized trial of this therapy. It was conducted at 25 centers, with nearly 700 patients with severe aortic stenosis randomized to undergo either transcatheter aortic valve replacement with a balloon-expandable valve (244 via the transfemoral and 104 via the transapical approach) or surgical replacement. The mean age of the patients was 84 years, and the Society of Thoracic Surgeons mean score was 12%, indicating high perioperative risk.

At 30 days after the procedure, 
the rates of death were 3.4% with transcatheter implantation and 6.5% with surgical replacement (P = .07). At 1 year, the rates were 24.2% and 26.8%, respectively (P = 0.44, and P = .001 for noninferiority). 

However, the rate of major stroke was higher in the transcatheter implantation group: 3.8% vs 2.1% in the surgical group (P = .20) at 1 month and 5.1% vs 2.4% (P = .07) at 1 year.
 Vascular complications were significantly more frequent in the transcatheter implantation group, and the new onset of atrial fibrillation and major bleeding were significantly higher in the surgical group.

Patients in the transcatheter implantation group had a significantly shorter length of stay in the intensive care unit and a shorter index hospitalization. At 30 days, the transcatheter group also had a significant improvement in New York Heart Association functional status and a better 6-minute walk performance, although at 1 year, these measures were similar between the two groups and were greatly improved over baseline. Quality of life, measured using the Kansas City Cardiomyopathy Questionnaire, was higher both at 6 months and at 1 year in the transcatheter implantation group compared with those who underwent the open surgical procedure.

 The higher risk of stroke with the transcatheter implantation procedure remains a concern. More evaluation is also needed with respect to function and cognition in the very elderly, and of efficacy and safety in higher- and lower-risk patients. Smith CR,Leon MB,Mack MJ,et al.PARTNER Trial Investigators.

 1- Transcatheter versus surgical aortic-valve replacement in high-risk patients.
N Engl J Med 2011364:21872198.
2-Health-related quality of life after transcatheter aortic valve replacement in inoperable patients with severe aortic stenosis. Circulation 2011; 124:19641972
                 

Comments

Popular posts from this blog

Things to Avoid in Anesthesia for Pregnant with Pulmonary hypertension

Anesthesia for Pregnant woman with Pulmonary Hypertension is a real challenge for anesthesiologist. It is very crucial to remember the pathophysiology of pulmonary hypertension in pregnant women and to avoid some practices that will worsen the cardiac status. 1-Avoid single shot spinal anesthesia. Some authorities consider pulmonary hypertension as absolute contraindication for single shot spinal anesthesia specially in patients with NYHA III ,IV. Spinal anesthesia causes major hemodynamic instability(decrease SVR, decrease VR, decrease in CO) The preferred neuroaxial techniques are (epidural anesthesia and CSE with minimal spinal dose) 2-Avoid PAC. Pulmonary Artery catheters insertion may lead to pulmonary artery rupture or thrombosis. TEE is better cardiac monitor/Arteial line is mandatory. 3-Avoid Nitrous oxide in gas mixture.N2O increase the PVR 4-If MV to be started, avoid High TV and PEEP 5-Avoid Oxytocin Boluses, or rapid administration of Pitocin. Oxytocin causes ...

power injectable peripherally inserted central catheters

Clinical experience with power injectable peripherally inserted central catheters in intensive care patients     Introduction In intensive care units (ICU), peripherally inserted central catheters (PICC) may be an alternative option to standard central venous catheters, particularly in patients with coagulation disorders or at high risk for infection. Some limits of PICCs (such as low flow rates) may be overcome by the use of power-injectable catheters . Method We have retrospectively reviewed all the power injectable PICCs inserted in adult and pediatric patients in the ICU during a 12-month period, focusing on the rate of complications at insertion and during maintenance. Results We have collected 89 power injectable PICCs (in adults and in children), both multiple and single lumen. All insertions were successful. There were no major complications at insertion and no episodes of catheter-related blood stream infection. Non-infective complications ...

Lumbar and thoracic epidural in Pediatrics-Technical aspect

The midline approach is most commonly used. The ligamentum   flavum is considerably thinner and less dense in infants than in older children and adults. This makes recognition of engagement in the ligament more difficult and requires both extra care and slower, more deliberate passage of the needle to avoid subarachnoid puncture. The angle of approach to the epidural space is slightly more perpendicular to the plane of the back than in older children and adults, owing to the orientation of the spinous   processes in infants and small children. The loss of resistance technique should be used, but only with saline, not air. There are several reports of venous air embolism in infants and children when air was used to test for loss of resistance Use a short (5 cm) 18-gauge Tuohy needle and a 20- or 21-gauge catheter in infants and children. Epidural kits specifically for infants and children are available Maximum of 0.4 mg/kg/hr of bupivacaine after the initial block is estab...