Skip to main content

TRANSCATHETER AORTIC VALVE IMPLANTATION ..What is good and what is bad



An estimated 2% to 9% of the elderly have aortic stenosis.

 Aortic valve replacement reduces mortality rates and improves function in all age groups, including octogenarians. 

Those with asymptomatic aortic stenosis tend to decline very quickly once they develop heart failure, syncope, or angina. Aortic valve replacement has been shown to put people back on the course they were on before they became symptomatic.

Transcatheter self-expanding transaortic valve implantation was approved by the FDA in November 2011. The procedure does not require open surgery and involves angioplasty of the old valve, with the new valve being passed into place through a catheter and expanded. Access is either transfemoral or transapical.
Transaortic valve implantation has been rapidly adopted in Europe since 2002 without any randomized control trials. 

The Placement of Aortic Transcatheter Valves (PARTNER) trialin 2011 was the first randomized trial of this therapy. It was conducted at 25 centers, with nearly 700 patients with severe aortic stenosis randomized to undergo either transcatheter aortic valve replacement with a balloon-expandable valve (244 via the transfemoral and 104 via the transapical approach) or surgical replacement. The mean age of the patients was 84 years, and the Society of Thoracic Surgeons mean score was 12%, indicating high perioperative risk.

At 30 days after the procedure, 
the rates of death were 3.4% with transcatheter implantation and 6.5% with surgical replacement (P = .07). At 1 year, the rates were 24.2% and 26.8%, respectively (P = 0.44, and P = .001 for noninferiority). 

However, the rate of major stroke was higher in the transcatheter implantation group: 3.8% vs 2.1% in the surgical group (P = .20) at 1 month and 5.1% vs 2.4% (P = .07) at 1 year.
 Vascular complications were significantly more frequent in the transcatheter implantation group, and the new onset of atrial fibrillation and major bleeding were significantly higher in the surgical group.

Patients in the transcatheter implantation group had a significantly shorter length of stay in the intensive care unit and a shorter index hospitalization. At 30 days, the transcatheter group also had a significant improvement in New York Heart Association functional status and a better 6-minute walk performance, although at 1 year, these measures were similar between the two groups and were greatly improved over baseline. Quality of life, measured using the Kansas City Cardiomyopathy Questionnaire, was higher both at 6 months and at 1 year in the transcatheter implantation group compared with those who underwent the open surgical procedure.

 The higher risk of stroke with the transcatheter implantation procedure remains a concern. More evaluation is also needed with respect to function and cognition in the very elderly, and of efficacy and safety in higher- and lower-risk patients. Smith CR,Leon MB,Mack MJ,et al.PARTNER Trial Investigators.

 1- Transcatheter versus surgical aortic-valve replacement in high-risk patients.
N Engl J Med 2011364:21872198.
2-Health-related quality of life after transcatheter aortic valve replacement in inoperable patients with severe aortic stenosis. Circulation 2011; 124:19641972
                 

Comments

Popular posts from this blog

The pressure volume loop...

In the pressure-volume loop below, cardiac work is best represented by:   the area of the curve  the slope of the line from points C to D  the distance of the line from points C to D  the slope of a line from points A to D .. .. ... .... ... .... .... .... In the pressure-volume loop below, cardiac work is best represented by:  the area of the curve Cardiac work is the product of pressure and volume and is linearly related to myocardial oxygen consumption. Cardiac work is best represented by the area of the curve of a pressure-volume loop.

Driving Pressure in ARDS: A new concept!

Driving Pressure and Survival in the Acute Respiratory Distress Syndrome Marcelo B.P. Amato, M.D., Maureen O. Meade, M.D., Arthur S. Slutsky, M.D., Laurent Brochard, M.D., Eduardo L.V. Costa, M.D., David A. Schoenfeld, Ph.D., Thomas E. Stewart, M.D., Matthias Briel, M.D., Daniel Talmor, M.D., M.P.H., Alain Mercat, M.D., Jean-Christophe M. Richard, M.D., Carlos R.R. Carvalho, M.D., and Roy G. Brower, M.D. N Engl J Med 2015; 372:747-755 February 19, 2015 DOI: 10.1056/NEJMsa1410639 BACKGROUND Mechanical-ventilation strategies that use lower end-inspiratory (plateau) airway pressures, lower tidal volumes (V T ), and higher positive end-expiratory pressures (PEEPs) can improve survival in patients with the acute respiratory distress syndrome (ARDS), but the relative importance of each of these components is uncertain. Because respiratory-system compliance (C RS ) is strongly related to the volume of aerated remaining functional lung during disease (termed functional lung size)...

Anaphylaxis updates part 2- Empty Ventricle Syndrome

Patients with anaphylaxis should not suddenly sit, stand, or be placed in the upright position. Instead, they should be placed on the back with their lower extremities elevated or, if they are experiencing respiratory distress or vomiting, they should be placed in a position of comfort with their lower extremities elevated. This accomplishes 2 therapeutic goals: 1) preservation of fluid in the circulation (the central vascular compartment), an important step in managing distributive shock; and 2) prevention of the empty vena cava/empty ventricle syndrome, which can occur within seconds when patients with anaphylaxis suddenly assume or are placed in an upright position. Patients with this syndrome are at high risk for sudden death. They are unlikely to respond to epinephrine regardless of route of administration, because it does not reach the heart and therefore cannot be circulated throughout the body