Skip to main content

Pneumothorax..make the Diagnosis














Know the sulcus sign  and make the pneumothorax Diagnosis...

Pneumothorax is frequently difficult to diagnose in the operating room or PACU . Sometimes it is obvious, with a hypoxic patient and absent breath sounds. But not usually. Most of the time we rely on a chest xray to help make the diagnosis.
Unfortunately, the good old chest xray only shows a pneumothorax about 30-50% of the time. A big part of the problem is that our patients are usually supine.A small pneumothorax make float anteriorly in the supine position, and if it is not big enough to wrap around the lateral edge of the lung, it may remain invisible. So you need to look for gross and subtle signs on the image that will help make the diagnosis. The deep sulcus sign is one of the more subtle signs. 
Simply stated, the deep sulcus sign is a radiolucent (dark) lateral sulcus where the chest wall meets the diaphragm. The amount of lung in this area is less, so a small amount of air will tend to darken the area making it more prominent. Look at patient left in the left photo, and compare to their right side. It is much darker and appears to extend lower than usual. In more extreme cases, the amount of air just above the diaphragm may make it appear inverted (right photo).
Bottom line: If you see a deep sulcus sign on the chest xray image, strongly consider pneumothorax. If the patient begins to have hemodynamic problems, needle the chest and chase with a chest tube. If they remain stable, the patient will still require a chest tube. Chest xray always underestimates the true size of the pneumothorax. Place the usual size chest tube and manage per your usual protocol.

Comments

Popular posts from this blog

Things to Avoid in Anesthesia for Pregnant with Pulmonary hypertension

Anesthesia for Pregnant woman with Pulmonary Hypertension is a real challenge for anesthesiologist. It is very crucial to remember the pathophysiology of pulmonary hypertension in pregnant women and to avoid some practices that will worsen the cardiac status. 1-Avoid single shot spinal anesthesia. Some authorities consider pulmonary hypertension as absolute contraindication for single shot spinal anesthesia specially in patients with NYHA III ,IV. Spinal anesthesia causes major hemodynamic instability(decrease SVR, decrease VR, decrease in CO) The preferred neuroaxial techniques are (epidural anesthesia and CSE with minimal spinal dose) 2-Avoid PAC. Pulmonary Artery catheters insertion may lead to pulmonary artery rupture or thrombosis. TEE is better cardiac monitor/Arteial line is mandatory. 3-Avoid Nitrous oxide in gas mixture.N2O increase the PVR 4-If MV to be started, avoid High TV and PEEP 5-Avoid Oxytocin Boluses, or rapid administration of Pitocin. Oxytocin causes ...

power injectable peripherally inserted central catheters

Clinical experience with power injectable peripherally inserted central catheters in intensive care patients     Introduction In intensive care units (ICU), peripherally inserted central catheters (PICC) may be an alternative option to standard central venous catheters, particularly in patients with coagulation disorders or at high risk for infection. Some limits of PICCs (such as low flow rates) may be overcome by the use of power-injectable catheters . Method We have retrospectively reviewed all the power injectable PICCs inserted in adult and pediatric patients in the ICU during a 12-month period, focusing on the rate of complications at insertion and during maintenance. Results We have collected 89 power injectable PICCs (in adults and in children), both multiple and single lumen. All insertions were successful. There were no major complications at insertion and no episodes of catheter-related blood stream infection. Non-infective complications ...

Lumbar and thoracic epidural in Pediatrics-Technical aspect

The midline approach is most commonly used. The ligamentum   flavum is considerably thinner and less dense in infants than in older children and adults. This makes recognition of engagement in the ligament more difficult and requires both extra care and slower, more deliberate passage of the needle to avoid subarachnoid puncture. The angle of approach to the epidural space is slightly more perpendicular to the plane of the back than in older children and adults, owing to the orientation of the spinous   processes in infants and small children. The loss of resistance technique should be used, but only with saline, not air. There are several reports of venous air embolism in infants and children when air was used to test for loss of resistance Use a short (5 cm) 18-gauge Tuohy needle and a 20- or 21-gauge catheter in infants and children. Epidural kits specifically for infants and children are available Maximum of 0.4 mg/kg/hr of bupivacaine after the initial block is estab...