Skip to main content

Heparin and AT III ..Part1..The Basics



Heparin is the most commonly used anticoagulant during operative procedures due to its cost, rapid onset, safety, and short half life as well as its reversibility.  The heparin molecule is a negatively charged molecule . 
 It's mode of action is important in understanding its limitations and potential problems that may occur with its use.  Heparin can only function after it binds to a protein that circulates naturally in the blood stream by the name of antithrombin or AT III.  
Once heparin binds to free circulating antithrombin, this complex is capable of it inhibiting thrombin as well as activated factor X.  Thrombin is the main coagulant protein in the coagulation cascade.  


AT (formerly AT III) is a glycoprotein that functions normally as a natural anticoagulant, providing inhibition of coagulation enzymes in a slow progressive manner. In the presence of heparin, AT undergoes a conformational change that results in a 1000 fold increase in inhibitory activity.  
AT has anti-inflammatory functions as well related to its effects on on the coagulation cascade,resulting in protection of the endothelial lining. 
 AT deficiency is a rare (0.16%) but serious medical condition.  These patients can see an relative risk for VTE of 7 to 8 compared to the normal population underscoring the importance of adequate AT levels.


Heparin has a few important limitations.  First, it has no inhibiting effect on FXa which is already bound to platelets in prothrombinase present at the site of a clot.  Furthermore, thrombin bound to fibrin is also excluded from the effects of the heparin-AT complex.  From a pharmakokinetic standpoint, heparin is limited in cases where large amounts of acute phase reactants are circulating in acutely ill patients as they bind heparin making it unavailable to bind to AT. This is also a problem in patients with malignancy and post partum.

Comments

Post a Comment

Popular posts from this blog

Things to Avoid in Anesthesia for Pregnant with Pulmonary hypertension

Anesthesia for Pregnant woman with Pulmonary Hypertension is a real challenge for anesthesiologist. It is very crucial to remember the pathophysiology of pulmonary hypertension in pregnant women and to avoid some practices that will worsen the cardiac status. 1-Avoid single shot spinal anesthesia. Some authorities consider pulmonary hypertension as absolute contraindication for single shot spinal anesthesia specially in patients with NYHA III ,IV. Spinal anesthesia causes major hemodynamic instability(decrease SVR, decrease VR, decrease in CO) The preferred neuroaxial techniques are (epidural anesthesia and CSE with minimal spinal dose) 2-Avoid PAC. Pulmonary Artery catheters insertion may lead to pulmonary artery rupture or thrombosis. TEE is better cardiac monitor/Arteial line is mandatory. 3-Avoid Nitrous oxide in gas mixture.N2O increase the PVR 4-If MV to be started, avoid High TV and PEEP 5-Avoid Oxytocin Boluses, or rapid administration of Pitocin. Oxytocin causes ...

power injectable peripherally inserted central catheters

Clinical experience with power injectable peripherally inserted central catheters in intensive care patients     Introduction In intensive care units (ICU), peripherally inserted central catheters (PICC) may be an alternative option to standard central venous catheters, particularly in patients with coagulation disorders or at high risk for infection. Some limits of PICCs (such as low flow rates) may be overcome by the use of power-injectable catheters . Method We have retrospectively reviewed all the power injectable PICCs inserted in adult and pediatric patients in the ICU during a 12-month period, focusing on the rate of complications at insertion and during maintenance. Results We have collected 89 power injectable PICCs (in adults and in children), both multiple and single lumen. All insertions were successful. There were no major complications at insertion and no episodes of catheter-related blood stream infection. Non-infective complications ...

Lumbar and thoracic epidural in Pediatrics-Technical aspect

The midline approach is most commonly used. The ligamentum   flavum is considerably thinner and less dense in infants than in older children and adults. This makes recognition of engagement in the ligament more difficult and requires both extra care and slower, more deliberate passage of the needle to avoid subarachnoid puncture. The angle of approach to the epidural space is slightly more perpendicular to the plane of the back than in older children and adults, owing to the orientation of the spinous   processes in infants and small children. The loss of resistance technique should be used, but only with saline, not air. There are several reports of venous air embolism in infants and children when air was used to test for loss of resistance Use a short (5 cm) 18-gauge Tuohy needle and a 20- or 21-gauge catheter in infants and children. Epidural kits specifically for infants and children are available Maximum of 0.4 mg/kg/hr of bupivacaine after the initial block is estab...