Skip to main content

Diabetic Ketoacidosis: Case Discussion

Use the following hypothetical case as a starting point.
A morbidly obese (BMI 48.8) woman in her early 20’s with no significant past medical history presented for relatively minor, superficial, elective surgery involving skin grafting. In the pre operative holding area her vital signs were normal except for a pulse of 142. An EKG showed sinus tachycardia. The patient notes significant anxiety. The patient is given 1 L crystalloid and 2 mg midazolam and her pulse came down to 128. The decision was made to proceed to the operating room and an uneventful induction of general endotracheal anesthesia ensued. After a second liter of fluid, the heart rate remained in the 130s and an intraoperative venous blood gas was sent. The results were remarkable for a pH of 7.25; a calculated bicarbonate of 14, and a glucose of 486. The pt was given a 10 unit IV insulin bolus and started on an insulin drip. She received an additional liter of IV fluid and was admitted for further evaluation of her hyperglycemia and acidosis.

Diabetic ketoacidosis (DKA) can present with signs and symptoms of excessive thirst, urination, vomiting, abdominal pain, confusion, tachypnea and tachycardia. However in some cases the symptoms can be minimal. DKA can also present in type II diabetics but is more common with type I diabetes. It is often precipitated by insulin omission or an underlying stress such as an infection or myocardial infarction. The diagnosis of DKA includes hyperglycemia (though often less than 600 mg/dL), acidosis, and the presence of ketone bodies in the blood or urine. DKA differs from hyperglycemic, hyperosmolar, nonketosis (HHNK) which more commonly presents in type II diabetics. Ketone bodies are rarely seen in HHNK and patients often have a glucose > 600 mg/dL.

Treatment and anesthetic concerns of DKA are focused primarily on the underlying fluid deficit and electrolyte abnormalities as well as treatment of the hyperglycemia. Patients in DKA can have a fluid deficit of 3-6 L and should be resuscitated with normal saline at a rate of at least 0.5 – 1 L/hr with the goal of replacing 1/3 of the deficit in the first 6-8 hrs and the remaining 2/3 over 24 hours. Depletion of total body potassium (often 3-5 mEq/kg) is the primary electrolyte disturbance and serum levels reach a nadir 2-4 hours after IV insulin therapy is started. Potassium repletion is necessary and should be monitored every 2-4 hours in the early treatment phase. An intravenous insulin bolus of 10 units followed by a continuous infusion is a standard practice. The degree of acidosis should be followed by an ABG or by following the anion gap. After the glucose falls below 250 mg/dL, the IV fluids should include 5% dextrose. Insulin should be continued until the ketosis resolves.

Ref: Miller R (ed): Miller’s Anesthesia, 2005

Comments

Popular posts from this blog

power injectable peripherally inserted central catheters

Clinical experience with power injectable peripherally inserted central catheters in intensive care patients     Introduction In intensive care units (ICU), peripherally inserted central catheters (PICC) may be an alternative option to standard central venous catheters, particularly in patients with coagulation disorders or at high risk for infection. Some limits of PICCs (such as low flow rates) may be overcome by the use of power-injectable catheters . Method We have retrospectively reviewed all the power injectable PICCs inserted in adult and pediatric patients in the ICU during a 12-month period, focusing on the rate of complications at insertion and during maintenance. Results We have collected 89 power injectable PICCs (in adults and in children), both multiple and single lumen. All insertions were successful. There were no major complications at insertion and no episodes of catheter-related blood stream infection. Non-infective complications ...

Things to Avoid in Anesthesia for Pregnant with Pulmonary hypertension

Anesthesia for Pregnant woman with Pulmonary Hypertension is a real challenge for anesthesiologist. It is very crucial to remember the pathophysiology of pulmonary hypertension in pregnant women and to avoid some practices that will worsen the cardiac status. 1-Avoid single shot spinal anesthesia. Some authorities consider pulmonary hypertension as absolute contraindication for single shot spinal anesthesia specially in patients with NYHA III ,IV. Spinal anesthesia causes major hemodynamic instability(decrease SVR, decrease VR, decrease in CO) The preferred neuroaxial techniques are (epidural anesthesia and CSE with minimal spinal dose) 2-Avoid PAC. Pulmonary Artery catheters insertion may lead to pulmonary artery rupture or thrombosis. TEE is better cardiac monitor/Arteial line is mandatory. 3-Avoid Nitrous oxide in gas mixture.N2O increase the PVR 4-If MV to be started, avoid High TV and PEEP 5-Avoid Oxytocin Boluses, or rapid administration of Pitocin. Oxytocin causes ...

Steroids In Perioperative period...The Multi-purpose Drugs

1-Steroids are not Bronchodilator ,but have well established usefulness in hyper-reactive airway. They are also said to have a permissive role for bronchodilator medication. They can be administered orally, parenterally or in aerosol form 2- Steroids have been commonly used in chemotherapy for prevention of nausea along with other anti-emetic agents . Dexamethasone was found to be highly effective when given immediately before induction rather than at the end of anesthesia . 3- Steroids do exert analgesic effects. Various routes of administration of steroids include parentral, local infiltration at operated site , as an adjuvant in nerve blocks and central-neuraxial blockade. 4 - Steroids cannot be the mainstay of therapy in anaphylaxis because of the delayed onset of action, so they are used as adjunct after initial treatment with epinephrine. 5- Steroids (Dexamethsone) are of value in reduction or prevention of cerebral edema associated with parasitic infections and neopla...