Skip to main content

Tube cuff inflation..new method



This interesting study introduces a novel technique for guiding the inflation of tracheal tube cuffs to avoid excessive cuff pressures: listening with a stethoscope over the thyroid cartilage and inflating the cuff until breath sounds change from harsh to soft.


Tracheal tube cuffs are commonly inflated to pressures exceeding the recommended upper limit of 30 cmH2O. We evaluated whether a stethoscope-guided method of cuff inflation results in pressures within the recommended range. Patients were randomly assigned to receive one of two methods of cuff inflation. In the standard ‘just seal’ group, air was introduced into the tracheal cuff until the audible leak at the mouth disappeared. In the stethoscope-guided group, air was introduced into the cuff until a change from harsh to soft breath sounds occurred, whilst listening with a stethoscope bell placed over the thyroid cartilage. Twenty-five patients were recruited
to each group. The median (IQR [range]) cuff pressure in the ‘just seal’ group was 34 (28–40 [18–49]) cmH2O, and in the stethoscope-guided group was 20 (20–26 [16–28]) cmH2O,
p < 0.0001. The stethoscope-guided method of tracheal tube cuff inflation is a novel, simple technique that reliably results in acceptable tracheal cuff pressures.
Clinical evaluation of stethoscope-guided inflation of tracheal tube cuffs
Anaesthesia. 2011 Nov;66(11):1012-6

Comments

Popular posts from this blog

The pressure volume loop...

In the pressure-volume loop below, cardiac work is best represented by:   the area of the curve  the slope of the line from points C to D  the distance of the line from points C to D  the slope of a line from points A to D .. .. ... .... ... .... .... .... In the pressure-volume loop below, cardiac work is best represented by:  the area of the curve Cardiac work is the product of pressure and volume and is linearly related to myocardial oxygen consumption. Cardiac work is best represented by the area of the curve of a pressure-volume loop.

Driving Pressure in ARDS: A new concept!

Driving Pressure and Survival in the Acute Respiratory Distress Syndrome Marcelo B.P. Amato, M.D., Maureen O. Meade, M.D., Arthur S. Slutsky, M.D., Laurent Brochard, M.D., Eduardo L.V. Costa, M.D., David A. Schoenfeld, Ph.D., Thomas E. Stewart, M.D., Matthias Briel, M.D., Daniel Talmor, M.D., M.P.H., Alain Mercat, M.D., Jean-Christophe M. Richard, M.D., Carlos R.R. Carvalho, M.D., and Roy G. Brower, M.D. N Engl J Med 2015; 372:747-755 February 19, 2015 DOI: 10.1056/NEJMsa1410639 BACKGROUND Mechanical-ventilation strategies that use lower end-inspiratory (plateau) airway pressures, lower tidal volumes (V T ), and higher positive end-expiratory pressures (PEEPs) can improve survival in patients with the acute respiratory distress syndrome (ARDS), but the relative importance of each of these components is uncertain. Because respiratory-system compliance (C RS ) is strongly related to the volume of aerated remaining functional lung during disease (termed functional lung size)...

Anaphylaxis updates part 2- Empty Ventricle Syndrome

Patients with anaphylaxis should not suddenly sit, stand, or be placed in the upright position. Instead, they should be placed on the back with their lower extremities elevated or, if they are experiencing respiratory distress or vomiting, they should be placed in a position of comfort with their lower extremities elevated. This accomplishes 2 therapeutic goals: 1) preservation of fluid in the circulation (the central vascular compartment), an important step in managing distributive shock; and 2) prevention of the empty vena cava/empty ventricle syndrome, which can occur within seconds when patients with anaphylaxis suddenly assume or are placed in an upright position. Patients with this syndrome are at high risk for sudden death. They are unlikely to respond to epinephrine regardless of route of administration, because it does not reach the heart and therefore cannot be circulated throughout the body